Skip to main content
DEI in GPS
Access
Directory
Quick Links Click here to open the "Quick Links" submenu Down arrow
Quick Links for Faculty Quick Links for Staff Quick Links for Students
Caltech Logo
Division of Geological and Planetary Sciences
People
Professorial Faculty
Emeritus Faculty
Research Faculty
Visiting Faculty and Visitors
Postdoctoral Scholars
Graduate Students
Undergraduate Students
JPL Scientist
Research Staff
Support Staff
Research
Research Programs Open Research Programs Submenu
Geology Geobiology Geochemistry Geophysics Planetary Sciences Environmental Science and Engineering
Research Centers Open Research Centers Submenu
The Bruce Murray Lab Caltech Center for Comparative Planetary Evolution (3CPE) Climate Modeling Alliance (CliMA) Geomechanics and Mitigation of Geohazards (GMG) The Linde Center Seismological Laboratory Terrestrial Hazards Observation and Reporting (THOR)
Research Lab Schedule
Research Facilities - On Campus
Research Facilities - Off Campus
Research Administration
Academics
Undergraduate Program Open Undergraduate Program Submenu
Program Requirements GPS Minor
Graduate Program Open Graduate Program Submenu
Program Requirements Grad Program FAQs Admissions Advising Information for new grad students Master's Degree Doctoral Degree
Student Resources
Courses Open Courses Submenu
Course Offerings 2020-2021 Course Descriptions Setup a Class Website GPS Courses (2020-21)
Field Trips Open Field Trips Submenu
Contact Information Form for Class Field Trips Contact Information Form for Research Field Trips Field Vehicle Availability
Resources
DEI in GPS Open DEI in GPS Submenu
DEI Committee DEI Funding DEI Comment Form DEI Meeting Agendas and Minutes References on DEI in Geosciences Related Activities
Libraries Open Libraries Submenu
GPS Library Caltech Library Mineral Collection
Meeting Facilities Open Meeting Facilities Submenu
GPS Patio Tables
Safety Resources Open Safety Resources Submenu
GPS Emergency Procedures Emergency Action Plan (PDF) Safety Contacts Workplace Safety Checklist Evacuation Map
Quick Links
News & Events
GPS Events this Week Open GPS Events this Week Submenu
GPS Group Calendar
Award Announcements
News
Calendar
About
GPS History
GPS at a Glance
Contact Open Contact Submenu
Administrative and Grants Management Contact List (PDF) GPS Directory (PDF) Academic Leadership
Visit
Positions Available Open Positions Available Submenu
Faculty Positions Postdoctoral Positions Staff Positions
Support
In the News
Open search form
Menu Main Menu
Close
People Click here to open the "People" Submenu
Research Click here to open the "Research" Submenu
Academics Click here to open the "Academics" Submenu
Resources Click here to open the "Resources" Submenu
News & Events Click here to open the "News & Events" Submenu
About Click here to open the "About" Submenu
DEI in GPS
Access
Directory
Quick Links
Quick Links for Faculty Quick Links for Staff Quick Links for Students
People
Back
Professorial Faculty Emeritus Faculty Research Faculty Visiting Faculty and Visitors Postdoctoral Scholars Graduate Students Undergraduate Students JPL Scientist Research Staff Support Staff
Research
Back
Research Programs Geology Geobiology Geochemistry Geophysics Planetary Sciences Environmental Science and Engineering Research Centers The Bruce Murray Lab Caltech Center for Comparative Planetary Evolution (3CPE) Climate Modeling Alliance (CliMA) Geomechanics and Mitigation of Geohazards (GMG) The Linde Center Seismological Laboratory Terrestrial Hazards Observation and Reporting (THOR) Research Lab Schedule Research Facilities - On Campus Research Facilities - Off Campus Research Administration
Academics
Back
Undergraduate Program Program Requirements GPS Minor Graduate Program Program Requirements Grad Program FAQs Admissions Advising Information for new grad students Master's Degree Doctoral Degree Student Resources Courses Course Offerings 2020-2021 Course Descriptions Setup a Class Website GPS Courses (2020-21) Field Trips Contact Information Form for Class Field Trips Contact Information Form for Research Field Trips Field Vehicle Availability
Resources
Back
DEI in GPS DEI Committee DEI Funding DEI Comment Form DEI Meeting Agendas and Minutes References on DEI in Geosciences Related Activities Libraries GPS Library Caltech Library Mineral Collection Meeting Facilities GPS Patio Tables Safety Resources GPS Emergency Procedures Emergency Action Plan (PDF) Safety Contacts Workplace Safety Checklist Evacuation Map Quick Links
News & Events
Back
GPS Events this Week GPS Group Calendar Award Announcements News Calendar
About
Back
GPS History GPS at a Glance Contact Administrative and Grants Management Contact List (PDF) GPS Directory (PDF) Academic Leadership Visit Positions Available Faculty Positions Postdoctoral Positions Staff Positions Support In the News
Open search form
Paul Asimow
Office:
Phone:
Email: asimow@caltech.edu
Mail Code: MC 170-25
Administrative Assistant
Gabriella Keanaaina
Email: keanaain@caltech.edu
Phone: 626-395-2089
link Research Website
link Personal Website
Curriculum Vitae
Home  /  People  /  Paul D. Asimow

Paul D. Asimow

Eleanor and John R. McMillan Professor of Geology and Geochemistry
A.B., Harvard University, 1991; M.S., Caltech, 1993; Ph.D., 1997. Assistant Professor, 1999-2005; Associate Professor, 2005-2010; Professor, 2010-; McMillan Professor, 2016-.
  • Profile
  • Publications
  • Teaching
Research Summary
Computational, experimental, and observational approaches to igneous petrology and mineral physics

Research Options

Geochemistry;  Geology; 

Research Areas

Chemical Petrology;  Experimental Petrology;  High–pressure Mineral Physics;  Marine Geophysics;  Mineralogy; 

Thermodynamic and kinetic models of magmatic processes including adiabatic mantle melting and melt transport; the role of water in petrologic and geodynamic behavior of the mantle; melting and differentiation in the deep mantle and the early earth; experimental investigation of silicate and metallic liquids and minerals under static and dynamic high pressure; petrologic and geodynamic processes at mid-ocean ridges and back-arc basins.

To learn about the Caltech shock wave laboratory, see the Lindhurst Laboratory of Experimental Geophysics website.

If you are looking for the alphaMELTS software package, see MAGMASOURCE.

If you want to learn about thermodynamic Phase Equilibria, visit my interactive online curriculum for visualization of free energy relationships in binary and ternary systems.

PI Viewpoint by Prof. Paul D. Asimow, February 20, 2017: "I stand with the Association of American Universities to urge a permanent end to the recent executive order -- and any future action by the current Administration -- that would bar individuals from certain countries from entering or returning to the United States of America. Previous administrations' visa policies have achieved their security goals while welcoming talented individuals from all parts of the world to study, teach, and carry out research in the USA. It is essential to our nation's well-being and to the progress of science in the USA and the world that this continues without interruption. International researchers — including undergraduates, graduate students, postdocs, and visiting scientists — are encouraged to apply to work with me and with my group to create knowledge that illuminates our planet and benefits all of humanity."

Igneous Petrology and Mineral Physics

My group and I investigate the melting and crystallization of rocks and the influence of magmatic processes on the interiors of terrestrial planets (mostly Earth...). This research combines thermodynamic and quantum modeling, experimental investigation by static and shockwave techniques, and analysis of actual rocks from the world's oceans. The goal of all these studies is to characterize the mineralogy and melting of the top and bottom of earth's mantle, the formation of crust, and the nature of the core-mantle boundary, and to understand the role of these processes in the long-term differentiation and active heat engine of the earth.

PaulWithRock.jpg
Image Lightbox
PaulWithRock.jpg
Download Full Image

Kilauea.JPG
Image Lightbox
Kilauea.JPG
Download Full Image

Computational Petrology

Classical thermodynamics is a fantastically useful tool for understanding high-temperature and high-pressure processes such as melting and crystallization of rocks. When temperatures are high enough and processes are slow enough that the approach to equilibrium is a reasonable description of natural behavior, then we can use all the architecture of chemical thermodynamics to go from simple laboratory measurements to detailed prediction of unobservable phenomena under extreme conditions. This idea underlies a considerable fraction of my computational and experimental work.

Most of our computational work in igneous petrology is carried out using a self-consistent thermodynamic model of silicate-liquid equilibria, MELTS and related models. We publish and maintain our own front-end to the MELTS, pMELTS, and pHMELTS models, alphaMELTS, which you can download for Windows, MacOS, or Linux. A variety of online tools related to computational petrology are maintained at the MAGMAsource website.

RevisedModel2.jpg
Image Lightbox
RevisedModel2.jpg
Download Full Image



As an example of the kind of problem where thermodymamic modeling is essential, melting of the mantle by decompression at mid-ocean ridges and hotspots is a complex process. It takes place over a range of pressures and temperatures and may involve mutiple source compositions. The liquids are probably continuously extracted from the residue and mixed at some point during transit to the crust or in shallow magma chambers where the lavas differentiate before eruption. No single experiment can describe this entire process, so we use thermodynamically-based models of melting, melt migration, and fractionation to try to understand what information is encoded in data like crustal thickness and composition of basalts and peridotites.

One of our particular areas of focus is incorporating new ideas about the behavior of trace quantities of water in the mantle source region into melting models for normal and hotspot-affected mid-ocean ridges and back-arc basins. The discovery that water dissolves in nominally anhydrous mantle minerals and partitions into melts like a light rare-earth element led to the pHMELTS hybrid model that considers the effects of water on melting equilibria in dynamic, near-fractional polybaric melting regimes.

Further reading is available at my reprints page, including Asimow et al. (1997), Asimow & Ghiorso (1998) , Asimow (1999), Asimow & Langmuir (2003), Asimow, Dixon & Langmuir (2004), Smith & Asimow (2005) and more.

Experimental Petrology and Mineral Physics

I manage two experimental laboratories dedicated to different aspects of high-pressure Earth and planetary science: a static high-pressure lab and a shock wave laboratory.

system01_0.max-250x250.jpg

S1219_Steel_atoll.max-500x500.jpg
Image Lightbox
S1219_Steel_atoll.max-500x500.jpg
Download Full Image


In order to access the pressure, temperature, and chemical environments that occur anywhere in the crust and upper mantle of the Earth, and to hold samples there long enough to approach equilibrium, we have a static high-pressure, high-temperature laboratory. This lab, which includes equipment shared with Professors Rossman and Stolper, includes a Rockland Research 1000 ton multianvil device, three piston-cylinder devices, two TZM hydrothermal systems, and 1-atmosphere gas-mixing furnaces. Together these technologies give us access to conditions up to at least 20 and perhaps 25 GPa and temperatures to about 2400 °C. We have developed large-volume cells for the multianvil experiments that allow us to make and recover intact samples several millimeters across from pressures above 14 GPa. We are pursuing studies of the solubility of water in mantle minerals, the partitioning of water among melts and minerals, the effect of water on peridotite melting, the thermodynamics of silicate liquids at high pressure, and synthesis of high-pressure mineral phases.

459shotsmall.max-500x500.jpg



To reach more extreme conditions, such as those appropriate to the Earth's lower mantle and core, I operate the Lindhurst Laboratory for Experimental Geophysics, also called the Caltech GPS Shock Wave Lab. This unique facility was built by the late Professor Tom Ahrens and remains the only university-hosted light gas gun laboratory in the United States dedicated to geophysics and mineral physics.

Further reading on our experimental work is available at my reprints page, especially Mosenfelder et al. (2006), Mosenfelder et al. (2007), Mosenfelder et al. (2009), Asimow & Ahrens (2010), Balta et al. (2011), Hamecher et al. (2012), and more.

More and Assorted!

My students and I are often engaged in numerous other studies, usually arising from collaboration with others scientists and students. This has included work on the (oxygen and iron) stable and (strontium and neodymium) radiogenic isotopic composition of mantle-derived basalts and crustal anatectic melts, the petrological evolution of precursors to ultra high-pressure metamorphic rocks, the synthesis and characterization of advanced thermoelectric materials, the application of quantum modeling methods to geological solid and liquid solutions, trace element and noble gas partitioning and diffusion, NMR spectroscopy of high-pressure glasses and minerals, incorporation of thermodynamic models into computational fluid dynamic models, and whether or not glacially-driven sea-level fluctuations influence mid-ocean ridge melt production! Again, see my reprints page for details.

Selected Awards

James B. Macelwane Medal of the AGU
Frank Wigglesworth Clarke Medal of the Geochemical Society
Richard P. Feynman prize for excellence in teaching at Caltech

External Affiliations

Fellow of the American Geophysical Union
Fellow of the Mineralogical Society of America

For PDF reprints of papers that may not be available from the links below, see my page at CaltechAUTHORS

For a complete publications list, see feeds.library.caltech.edu
Ge 1. Earth and Environment. 9 units (3-3-3); third term, 2020-21. An introduction to the ideas and approaches of earth and planetary sciences, including both the special challenges and viewpoints of these kinds of science as well as the ways in which basic physics, chemistry, and biology relate to them. In addition to a wide-ranging lecture-oriented component, there will be a required field trip component. The lectures and topics cover such issues as solid Earth structure and evolution, plate tectonics, oceans and atmospheres, climate change, and the relationship between geological and biological evolution. Not offered on a pass/fail basis. Satisfies the menu requirement of the Caltech core curriculum.
Instructor: Asimow
Ge 116. Analytical Techniques Laboratory. 9 units (1-4-4); second term, 2020-21. Prerequisites: Ge 114 a or instructor's permission. Methods of quantitative laboratory analysis of rocks, minerals, and fluids in geological and planetary sciences. Consists of five intensive two-week modules covering scanning electron microscopy (imaging, energy-dispersive X-ray spectroscopy, electron backscatter diffraction); the electron microprobe (wavelength-dispersive X-ray spectroscopy); X-ray powder diffraction; optical, infrared, and Raman spectroscopy; and plasma source mass spectrometry for elemental and radiogenic isotope analysis. Satisfies the Institute core requirement for an additional introductory laboratory course.
Instructors: Asimow, Jackson, Rossman
Ge 212. Thermodynamics of Geological Systems. 9 units (3-0-6); first term, 2020-21. Prerequisites: Either Ch 21 abc, Ge 115 a, or equivalents. Chemical thermodynamics as applied to geological and geochemical problems. Classical thermodynamics, including stability criteria, homogeneous and heterogeneous equilibria, equilibria subject to generalized constraints, equations of state, ideal and non-ideal solutions, redox systems, and electrolyte conventions. Brief discussion of statistical foundations and an introduction to the thermodynamics of irreversible processes. Given in alternate years; not offered 2020-21.
Instructor: Asimow
Ge 215. Topics in Advanced Petrology. 9 units (3-0-6); first term, 2020-21. Prerequisites: Ge 115 ab or instructor's permission. Lectures, readings, seminars, and/or laboratory studies in igneous or metamorphic petrology, paragenesis, and petrogenesis. The course may cover experimental, computational, or analytical methods. Format and content are flexible according to the needs of the students. Given in alternate years; offered 2020-21.
Instructor: Asimow
Ge 1. Earth and Environment. 9 units (3-3-3); third term, 2019-20. An introduction to the ideas and approaches of earth and planetary sciences, including both the special challenges and viewpoints of these kinds of science as well as the ways in which basic physics, chemistry, and biology relate to them. In addition to a wide-ranging lecture-oriented component, there will be a required field trip component. The lectures and topics cover such issues as solid Earth structure and evolution, plate tectonics, oceans and atmospheres, climate change, and the relationship between geological and biological evolution. Not offered on a pass/fail basis. Satisfies the menu requirement of the Caltech core curriculum.
Instructor: Asimow
Course Website: http://web.gps.caltech.edu/CITonly/classes/ge1/
Ge 116. Analytical Techniques Laboratory. 9 units (1-4-4); second term, 2019-20. Prerequisites: Ge 114 a or instructor's permission. Methods of quantitative laboratory analysis of rocks, minerals, and fluids in geological and planetary sciences. Consists of five intensive two-week modules covering scanning electron microscopy (imaging, energy-dispersive X-ray spectroscopy, electron backscatter diffraction); the electron microprobe (wavelength-dispersive X-ray spectroscopy); X-ray powder diffraction; optical, infrared, and Raman spectroscopy; and plasma source mass spectrometry for elemental and radiogenic isotope analysis. Satisfies the Institute core requirement for an additional introductory laboratory course.
Instructors: Asimow, Jackson, Rossman
Course Website: http://www.asimow.com/Ge116/Ge116.html
Ge 212. Thermodynamics of Geological Systems. 9 units (3-0-6); first term, 2019-20. Prerequisites: Either Ch 21 abc, Ge 115 a, or equivalents. Chemical thermodynamics as applied to geological and geochemical problems. Classical thermodynamics, including stability criteria, homogeneous and heterogeneous equilibria, equilibria subject to generalized constraints, equations of state, ideal and non-ideal solutions, redox systems, and electrolyte conventions. Brief discussion of statistical foundations and an introduction to the thermodynamics of irreversible processes. Given in alternate years; offered 2019-20.
Instructor: Asimow
Ge 215. Topics in Advanced Petrology. 9 units (3-0-6); first term, 2019-20. Prerequisites: Ge 115 ab or instructor's permission. Lectures, readings, seminars, and/or laboratory studies in igneous or metamorphic petrology, paragenesis, and petrogenesis. The course may cover experimental, computational, or analytical methods. Format and content are flexible according to the needs of the students. Given in alternate years; not offered 2019-20.
Instructor: Asimow
Course Website: http://www.asimow.com/Ge215.html
Caltech Torch
Caltech Logo
California Institute of Technology
map marker
1200 East California Boulevard
Pasadena, California 91125
Contact Us Report a Copyright Infringement Website Feedback Privacy Notice Site Content Copyright © 2021 Log In