Skip to main content
DEI in GPS
Access
Directory
Quick Links Click here to open the "Quick Links" submenu Down arrow
Quick Links for Faculty Quick Links for Staff Quick Links for Students
Caltech Logo
Division of Geological and Planetary Sciences
People
Professorial Faculty
Emeritus Faculty
Research Faculty
Visiting Faculty and Visitors
Postdoctoral Scholars
Graduate Students
Undergraduate Students
JPL Scientist
Research Staff
Support Staff
Research
Research Programs Open Research Programs Submenu
Geology Geobiology Geochemistry Geophysics Planetary Sciences Environmental Science and Engineering
Research Centers Open Research Centers Submenu
The Bruce Murray Lab Caltech Center for Comparative Planetary Evolution (3CPE) Climate Modeling Alliance (CliMA) Geomechanics and Mitigation of Geohazards (GMG) The Linde Center Seismological Laboratory Terrestrial Hazards Observation and Reporting (THOR)
Research Lab Schedule
Research Facilities - On Campus
Research Facilities - Off Campus
Research Administration
Academics
Undergraduate Program Open Undergraduate Program Submenu
GPS Minor Program Requirements
Graduate Program Open Graduate Program Submenu
Program Requirements Grad Program FAQs Admissions Advising Information for new grad students Master's Degree Doctoral Degree
Student Resources
Courses Open Courses Submenu
Online Courses Winter 2021 Course Offerings 2020-2021 Course Descriptions Setup a Class Website GPS Courses (2020-21)
Field Trips Open Field Trips Submenu
Contact Information Form for Class Field Trips Contact Information Form for Research Field Trips Field Vehicle Availability
Resources
DEI in GPS Open DEI in GPS Submenu
DEI Committee DEI Funding DEI Comment Form DEI Meeting Agendas and Minutes References on DEI in Geosciences Related Activities
Libraries Open Libraries Submenu
GPS Library Caltech Library Mineral Collection
Meeting Facilities Open Meeting Facilities Submenu
GPS Patio Tables
Safety Resources Open Safety Resources Submenu
GPS Emergency Procedures Emergency Action Plan (PDF) Safety Contacts Workplace Safety Checklist Evacuation Map
Quick Links
News & Events
GPS Events this Week Open GPS Events this Week Submenu
GPS Group Calendar
Award Announcements
News
Calendar
About
GPS History
GPS at a Glance
Contact Open Contact Submenu
Administrative and Grants Management Contact List (PDF) GPS Directory (PDF) Academic Leadership
Visit
Positions Available Open Positions Available Submenu
Faculty Positions Postdoctoral Positions Staff Positions
Support
In the News
Open search form
Menu Main Menu
Close
People Click here to open the "People" Submenu
Research Click here to open the "Research" Submenu
Academics Click here to open the "Academics" Submenu
Resources Click here to open the "Resources" Submenu
News & Events Click here to open the "News & Events" Submenu
About Click here to open the "About" Submenu
DEI in GPS
Access
Directory
Quick Links
Quick Links for Faculty Quick Links for Staff Quick Links for Students
People
Back
Professorial Faculty Emeritus Faculty Research Faculty Visiting Faculty and Visitors Postdoctoral Scholars Graduate Students Undergraduate Students JPL Scientist Research Staff Support Staff
Research
Back
Research Programs Geology Geobiology Geochemistry Geophysics Planetary Sciences Environmental Science and Engineering Research Centers The Bruce Murray Lab Caltech Center for Comparative Planetary Evolution (3CPE) Climate Modeling Alliance (CliMA) Geomechanics and Mitigation of Geohazards (GMG) The Linde Center Seismological Laboratory Terrestrial Hazards Observation and Reporting (THOR) Research Lab Schedule Research Facilities - On Campus Research Facilities - Off Campus Research Administration
Academics
Back
Undergraduate Program GPS Minor Program Requirements Graduate Program Program Requirements Grad Program FAQs Admissions Advising Information for new grad students Master's Degree Doctoral Degree Student Resources Courses Online Courses Winter 2021 Course Offerings 2020-2021 Course Descriptions Setup a Class Website GPS Courses (2020-21) Field Trips Contact Information Form for Class Field Trips Contact Information Form for Research Field Trips Field Vehicle Availability
Resources
Back
DEI in GPS DEI Committee DEI Funding DEI Comment Form DEI Meeting Agendas and Minutes References on DEI in Geosciences Related Activities Libraries GPS Library Caltech Library Mineral Collection Meeting Facilities GPS Patio Tables Safety Resources GPS Emergency Procedures Emergency Action Plan (PDF) Safety Contacts Workplace Safety Checklist Evacuation Map Quick Links
News & Events
Back
GPS Events this Week GPS Group Calendar Award Announcements News Calendar
About
Back
GPS History GPS at a Glance Contact Administrative and Grants Management Contact List (PDF) GPS Directory (PDF) Academic Leadership Visit Positions Available Faculty Positions Postdoctoral Positions Staff Positions Support In the News
Open search form
John Eiler
Office:
Phone:
Email: eiler@gps.caltech.edu
Mail Code:
Administrative Assistant
Kacey Gibson
Email: kaceyk@caltech.edu
Phone: 626-395-6921
Home  /  People  /  John M. Eiler

John M. Eiler

Robert P. Sharp Professor of Geology and Geochemistry
B.S., University of Iowa, 1989; M.S., University of Wisconsin (Madison), 1991; Ph.D., 1994. Research Fellow, Caltech, 1994-97; Senior Research Fellow 1997-98; Assistant Professor, 1998-2003; Associate Professor, 2003-06; Professor, 2006-; Sharp Professor, 2008-.
  • Profile
  • Publications
  • Teaching
Research Summary
The isotope geochemistry of light elements (H, C, N, O and S), as applied to: the origin and evolution of igneous rocks; the origin and evolution of meteorites; planetary atmospheres; atmospheric and environmental chemistry; paleoclimate; and paleontology.

Research Options

Geochemistry;  Geology; 

Research Areas

Atmospheric Chemistry;  Atmospheric Science;  Chemical Petrology;  Environmental Geochemistry;  Extraterrestrial Geochemistry/Cosmochemistry;  Global Climate Studies;  Isotope Biogeochemistry;  Planetary Atmospheres;  Stable Isotope Geochemistry; 

Research Interests

The 13C-18O carbonate paleothermometer: The hotest thing off our presses is a carbonate paleothermometer based on the ordering of 13C and 18O into bonds with each other in the carbonate mineral latice. This differs in important waysfrom Urey's classic carbonate-water oxygen isotope thermometer (or similar ones based on other set ofs phases. Most significantly, the 13C-18O thermometer is based on a homogeneous equilibrium (an exchange reaction involving only components of a single phase). Therefore, it rigorously constrains temperature without needing to know the oxygen isotope composition of water, or anything else besides carbonate). This property of the 13C-18O thermometer promisses to resolve many long-standing problems in paleoclimate research and paleothermometry. Our first application focused on determining the growth temperatures of soil carbonates from the Altiplano, which can be compared to the 'surface lapse rate' to constrain its uplift history. Ongoing applications include the thermal histories of aqueously altered meteorites, marine paleoclimate studies in 'deep' geologic history (the mesozoic, paleozoic and late pre-cambrian), and the body temperatures of the dinosours (roar!). These applications are anticipated to be the tip of a large iceberg. This is an ideal program for an ambitous new student or postoc to join...

Multiply-substituted isotopologues of CO2 in air: The same set of instruments used to study 13C-18O ordering in carbonates can be used to measure the abundances of the rare carbon dioxide isotopologue, 13C18O16O, in air and other natural gases. This molecule has several interesting and exotic properties, and as a result it can provide unique constraints on the origins of CO2 and the budget of atmospheric CO2. For example, the concentration of this isotopologue is sensitive to whether or not CO2 comes from high temperature sources (car exhaust or forest fires) vs. low-temperature sources (e.g., respiration), independent of the ∂13C of that CO2. We are applying this measurement to understand the atmospheric budget of CO2 and the mechanisms of its production and consumption in model systems. In the near future, we will begin similar studies of multiply-substituted isotopologues of other atmospheric gases.

Earth's atmospheric H2 budget: Molecular hydrogen (H2) is the tenth most abundant molecule in earth's atmosphere, and the second most abundant reduced gas, after methane. It participates in or indirectly influences photochemical cycles of OH, methane and ozone, and has a poorly understood role in the microbiology of soils. The budget and environmental chemistry of H2 is not well known, and this ignorance poses a significant problem for predicting the possible consequences of anthropogenic emissions of H2 that might be associated with the transition to a 'hydrogen economy'. We have been examining these problems by modeling the effects of loading the atmosphere with H2, characterizing the stable isotopic (D/H) variability of atmospheric H2, and determining the isotopic characteristics of H2 of different origins. This work is rooted in a new analytical capaibility we developed for precise analysis of the ∂D of H2 in small (liter and smaller) samples of air. Our most recent work on this problem focuses on H2 uptake by soils.

Hydrogen budget of the earth's interior: A large fraction, perhaps the majority, of earth's hydrogen atoms are contained in nominally anhydrous mantle minerals (e.g., pyroxene and olivine). This hydrogen exerts strong influences on the mantle's rheology and melting properties, but little is known about its distribution and budget. We are studying the mantle H cycle through hydrogen isotope analyses of nominally anhydrous minerals in mantle xenoliths and of glasses and minerals in mantle-derived lavas. This work has revealed that most nominally anhydrous minerals a strongly D-depleted relative to most of earth's H, including that extracted from the mantle dissolved in silicate melts. We believe this property can be understood most of the H contained in the earth's nominally anhydrous mantle minerals is the residue of near-complete dehydration and partial melting of subducted slabs. We are in the process of constructing a more general model for the mantle H cycle that integrates this exotic property of nominally anhydrous minerals with D/H ratios of other mantle materials.

Origin and evolution of igneous rocks: Basaltic lavas are the most widespread (if indirect) samples of the chemistry of the Earth's mantle. We have a range of projects involving uses of the isotopic composition of oxygen as a monitor of the presence and abundance of crustal materials (both subducted and from the existing lithosphere) as components to the sources of basaltic lavas. Oxygen isotopes offer unusual constraints on these issues because oxygen is the only element that is present in nearly equal abundances in most natural solids, melts, and fluids, and the isotopic composition of oxygen is sensitive to fractionations that occur at or near the Earth's surface â€" therefore discriminating between materials that have resided in the crust and those that were produced by differentiation within the mantle. Recent developments in this program include study of global geochemical variations of mid-ocean ridge basalts, an examination of the impact crustal contamination has on high-magnesium Icelandic basalts, detailed study of the geochemistry of central american arc lavas, and study of samples recently recovered by drilling Mauna Kea and Koolau volcanoes in the Hawaiian islands.

Aqueous alteration of meteorites: Aqueously altered meteorites are rare but provide some of our only windows onto the origins and geochemical cycles of water on bodies other than the earth. We have previously studied the H and O isotope geochemistry of the aqueously altered Martian meteorites and carbonaceous chondrites. A project currently underway applies the 13C-18O carbonate paleothermometer to carbonate minerals in these rocks. These measurements will determine the temperatures of aqueous alteration and the oxygen isotope compositions of waters that infiltrated the SNC and carbonaceous chondrite meteoritesâ€"two key pieces to the puzzle of aqueous chemistry in the crust of Mars and the interiors of primitive solar system bodies.

Stable isotope geochemistry of 'cold' environments: The stable isotopes of light elements are useful for study of the atmospheres and other near-surface volatiles on the earth and other planets. In many environments of interest (the earth's upper atmosphere, the atmospheres of Mars and the satelites of the outer planets, and comets), fractionations of stable isotopes take place at temperatures far below that at the earth's surface. Stable isotope fractionations under such conditions are largely unknown. We have conducted experiments constraining equilibrium and kinetic isotopic fractionations in such systems. These data will eventually be needed to interpret measurements of the isotopic composition of the Martian atmosphere. They also reveal fascinating and counter-intuitive fractionation behaviours (e.g., 'reversed' vapor pressure isotope effects) and are intrinsically interesting as insights on the physical chemistry of isotopically substituted molecules. In the future, this work will focus on vapor-pressure isotope effects for multiply-substituted isotopologues.

Ge 115 b. Petrology and Petrography: Metamorphic Petrology. 9 units (3-3-3); second term, 2020-21. Prerequisites: Ge 114 ab. The mineralogic and chemical composition, occurrence, and classification of metamorphic rocks; interpretation of mineral assemblages in the light of chemical equilibrium and experimental studies. Discussion centers on the use of metamorphic assemblages to understand tectonic, petrologic, and geochemical problems associated with convergent plate boundaries and intrusion of magmas into the continental crust. May be taken before Ge 115 a. Given in alternate years; offered 2020-21.
Instructor: Eiler
Ge 140 a. Stable Isotope Geochemistry. 9 units (3-0-6); second term, 2020-21. An introduction to the principles and applications of stable isotope systems to earth science, emphasizing the physical, chemical and biological processes responsible for isotopic fractionation, and their underlying chemical-physics principles. Topics include the kinetic theory of gases and related isotopic fractionations, relevant subjects in quantum mechanics and statistical thermodynamics, equations of motion of charged particles in electrical and magnetic fields (the basis of mass spectrometry), the photochemistry of isotopic species, and applications to the earth, environmental and planetary sciences. Taught in odd years; alternates with Ge 140b. Offered 2020-21.
Instructor: Eiler
Ge 218. Stable Isotopes Seminar. 6 units (3-0-3); second term, 2020-21. Prerequisites: Ge 140 or permission of instructor. The course deals with advanced topics in stable isotope geochemistry and builds on Ge 140. The course will explore in depth the theory and applications of a subject in stable isotope geochemistry, selected by consensus of the enrolled students at or before the beginning of term. Example subjects could include: stable isotope thermometry; paleoclimate studies; paleoaltimetry; the early solar system; terrestrial weathering; photochemistry; or biosynthetic fractionations. The class will read and discuss classic papers in that subject area, supplemented with instructor lectures and broader background reading. All participants will lead discussions of papers and present one lecture on a relevant subject. Given in alternate years; not offered 2020-21.
Instructor: Eiler
Ge 218. Stable Isotopes Seminar. 6 units (3-0-3); second term, 2019-20. Prerequisites: Ge 140 or permission of instructor. The course deals with advanced topics in stable isotope geochemistry and builds on Ge 140. The course will explore in depth the theory and applications of a subject in stable isotope geochemistry, selected by consensus of the enrolled students at or before the beginning of term. Example subjects could include: stable isotope thermometry; paleoclimate studies; paleoaltimetry; the early solar system; terrestrial weathering; photochemistry; or biosynthetic fractionations. The class will read and discuss classic papers in that subject area, supplemented with instructor lectures and broader background reading. All participants will lead discussions of papers and present one lecture on a relevant subject. Given in alternate years; offered 2019-20.
Instructor: Eiler
Caltech Torch
Caltech Logo
California Institute of Technology
map marker
1200 East California Boulevard
Pasadena, California 91125
Contact Us Report a Copyright Infringement Website Feedback Privacy Notice Site Content Copyright © 2021 Log In