Thomas H. Heaton
Courses
Courses Taught
ME 35c Statics and Dynamics. 9 units (3-0-6); Prerequisites: Ma 1 abc, Ph 1 abc, Introduction to analysis of stress and strain in engineering.
ME 65. Mechanics of Materials. 9 units (3-0-6); Prerequisites: AM 35 abc, Ma 2 ab. Introduction to continuum mechanics, principles of elasticity, plane stress, plane strain, axisymmetric problems, stress concentrations, thin films, fracture mechanics, variational principles, frame structures.
ME 66. Vibration. 9 units (3-0-6); Prerequisites: AM 35 abc, Ma 2 ab. Introduction to vibration and wave propagation in continuous and discrete multi-degree-of-freedom systems. Strings, mass-spring systems, mechanical devices, elastic continua. Equations of motion, Lagrange's equations, Hamilton's principle, and time-integration schemes.
CE/Ge 181. Engineering Seismology. 9 units (3-0-6); Characteristics of potentially destructive earthquakes from the engineering point of view. Determination of location and size of earthquakes; magnitude, intensity, frequency of occurrence; engineering implications of geological phenomena, including earthquake mechanisms, faulting, fault slippage, and effects of local geology on earthquake ground motion. (CE/GE 181 page)
ME 65. Mechanics of Materials. 9 units (3-0-6); Prerequisites: AM 35 abc, Ma 2 ab. Introduction to continuum mechanics, principles of elasticity, plane stress, plane strain, axisymmetric problems, stress concentrations, thin films, fracture mechanics, variational principles, frame structures.
ME 66. Vibration. 9 units (3-0-6); Prerequisites: AM 35 abc, Ma 2 ab. Introduction to vibration and wave propagation in continuous and discrete multi-degree-of-freedom systems. Strings, mass-spring systems, mechanical devices, elastic continua. Equations of motion, Lagrange's equations, Hamilton's principle, and time-integration schemes.
CE/Ge 181. Engineering Seismology. 9 units (3-0-6); Characteristics of potentially destructive earthquakes from the engineering point of view. Determination of location and size of earthquakes; magnitude, intensity, frequency of occurrence; engineering implications of geological phenomena, including earthquake mechanisms, faulting, fault slippage, and effects of local geology on earthquake ground motion. (CE/GE 181 page)
Last updated: October 01, 2007 11:27

