Up to All Courses for 2018-19 Show Filters

Environmental Science & Engineering (ESE) Courses (2018-19)

Bi/Ge/ESE 105. Evolution. 12 units (3-4-5): second term. The theory of evolution is arguably biology's greatest idea and serves as the overarching framework for thinking about the diversity and relationships between organisms. This course will present a broad picture of evolution starting with discussions of the insights of the great naturalists, the study of the genetic basis of variation, and an introduction to the key driving forces of evolution. Following these foundations, we will then focus on a number of case studies including the following: evolution of oxygenic photosynthesis, origin of eukaryotes, multicellularity, influence of symbiosis, the emergence of life from the water (i.e. fins to limbs), the return of life to the water (i.e. limbs to fins), diversity following major extinction events, the discovery of Archaea, insights into evolution that have emerged from sequence analysis, and finally human evolution and the impact of humans on evolution (including examples such as antibiotic resistance). A specific focus for considering these issues will be the island biogeography of the Galapagos. Given in alternate years; not offered 2018-19. Instructors: Phillips, Orphan.
Ge/ESE 118. Methods in Data Analysis. 9 units (3-0-6): first term. Introduction to methods in data analysis. Course will be an overview of different ways that one can quantitatively analyze data, and will not focus on any one methodology. Topics will include linear regression, least squares inversion, Fourier analysis, principal component analysis, and Bayesian methods. Emphasis will be on both a theoretical understanding of these methods and on practical applications. Exercises will include using numerical software to analyze real data. Instructor: Tsai.
Ge/ESE 139. Introduction to Atmospheric Radiation. 9 units (3-0-6): second term. The basic physics of absorption and scattering by molecules, aerosols, and clouds. Theory of radiative transfer. Band models and correlated-k distributions and scattering by cloud and aerosol particles. Solar insolation, thermal emission, heating rates, and examples of applications to climate and remote sensing of Earth, planets and exoplanets. Given in alternate years; not offered 2018-19. Instructor: Yung.
Ge/ESE 140 c. Stable Isotope Biogeochemistry. 9 units (3-0-6): third term. An introduction to the use of stable isotopes in biogeochemistry, intended to give interested students the necessary background to understand applications in a variety of fields, from modern carbon cycling to microbial ecology to records of Ancient Earth. Topics include the principles of isotope distribution in reaction networks Instructor: Sessions.
ESE/Ge 142. Aquatic Chemistry of Natural Waters. 9 units (3-0-6): third term. Inorganic chemistry of natural waters with an emphasis on equilibrium solutions to problems in rivers, lakes, and the ocean. Topics will include, acid-base chemistry, precipitation, complexation, redox reactions, and surface chemistry. Examples will largely be drawn from geochemistry and geobiology. Selected topics in kinetics will be covered based on interest and time. Instructor: Adkins.
Ge/ESE 143. Organic Geochemistry. 9 units (3-2-4): third term. Main topics include the analysis, properties, sources, and cycling of natural organic materials in the environment, from their production in living organisms to burial and decomposition in sediments and preservation in the rock record. Specific topics include analytical methods for organic geochemistry, lipid structure and biochemistry, composition of organic matter, factors controlling organic preservation, organic climate and CO2 proxies, diagenesis and catagenesis, and biomarkers for ancient life. A laboratory component (three evening labs) teaches the extraction and analysis of modern and ancient organic biomarkers by GC/MS. Class includes a mandatory one-day (weekend) field trip to observe the Monterey Formation. Offered 2018-19. Instructor: Sessions.
Ge/ESE 149. Marine Geochemistry. 9 units (3-0-6): second term. Introduction to chemical oceanography and sediment geochemistry. We will address the question "Why is the ocean salty?" by examining the processes that determine the major, minor, and trace element distributions of seawater and ocean sediments. Topics include river and estuarine chemistry, air/sea exchange, nutrient uptake by the biota, radioactive tracers, redox processes in the water column and sediments, carbonate chemistry, and ventilation. Given in alternate years; not offered 2018-19. Instructor: Adkins.
Ge/ESE 150. Planetary Atmospheres. 9 units (3-0-6): second term. Origin of planetary atmospheres, escape, and chemical evolution. Tenuous atmospheres: the moon, Mercury, and outer solar system satellites. Comets. Vapor-pressure atmospheres: Triton, Io, and Mars. Spectrum of dynamical regimes on Mars, Earth, Venus, Titan, and the gas giant planets. Instructor: Ingersoll.
Ge/ESE 154. Readings in Paleoclimate. 3 units (1-0-2): second term. Lectures and readings in areas of current interest in paleoceanography and paleoclimate. Instructor: Adkins.
Ge/ESE 155. Paleoceanography. 9 units (3-0-6): second term. Evaluation of the data and models that make up our current understanding of past climates. Emphasis will be placed on a historical introduction to the study of the past ten thousand to a few hundred thousand years, with some consideration of longer timescales. Evidence from marine and terrestrial sediments, ice cores, corals, and speleothems will be used to address the mechanisms behind natural climate variability. Models of this variability will be evaluated in light of the data. Topics will include sea level and ice volume, surface temperature evolution, atmospheric composition, deep ocean circulation, tropical climate, ENSO variability, and terrestrial/ocean linkages. Given in alternate years; offered 2018-19. Instructor: Adkins.
Ge/EE/ESE 157 c. Remote Sensing for Environmental and Geological Applications. 9 units (3-3-3): third term. Analysis of electromagnetic radiation at visible, infrared, and radio wavelengths for interpretation of the physical and chemical characteristics of the surfaces of Earth and other planets. Topics: interaction of light with materials, spectroscopy of minerals and vegetation, atmospheric removal, image analysis, classification, and multi-temporal studies. This course does not require but is complementary to EE 157ab with emphasis on applications for geological and environmental problems, using data acquired from airborne and orbiting remote sensing platforms. Students will work with digital remote sensing datasets in the laboratory and there will be one field trip. Instructor: Ehlmann.
Ge/ESE 170. Microbial Ecology. 9 units (3-2-4): third term. Structural, phylogenetic, and metabolic diversity of microorganisms in nature. The course explores microbial interactions, relationships between diversity and physiology in modern and ancient environments, and influence of microbial community structure on biogeochemical cycles. Introduction to ecological principles and molecular approaches used in microbial ecology and geobiological investigations. Offered in alternate years; offered 2018-19. Instructor: Orphan.
ESE/Ge/Ch 171. Atmospheric Chemistry I. 9 units (3-0-6): third term. A detailed course about chemical transformation in Earth's atmosphere. Kinetics, spectroscopy, and thermodynamics of gas-phase chemistry of the stratosphere and troposphere; sources, sinks, and lifetimes of trace atmospheric species; stratospheric ozone chemistry; oxidation mechanisms in the troposphere. Offered 2018-19. Instructors: Seinfeld, Wennberg.
ESE/Ge/Ch 172. Atmospheric Chemistry II. 3 units (3-0-0): first term. A lecture and discussion course about active research in atmospheric chemistry. Potential topics include halogen chemistry of the stratosphere and troposphere; aerosol formation in remote environments; coupling of dynamics and photochemistry; development and use of modern remote-sensing and in situ instrumentation. Graded pass/fail. Offered 2018-19. Instructors: Seinfeld, Wennberg.
Ge/Bi/ESE 246. Molecular Geobiology Seminar. 6 units (2-0-4); second term: Recommended preparation: ESE/Bi 166. Critical reviews and discussion of classic papers and current research in microbiology and geomicrobiology. As the topics will vary from year to year, it may be taken multiple times. Instructor: Orphan.